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Abstract 

Irregularly flooded wetlands are found above the mean high water tidal datum and are exposed to tides 

and saltwater less frequently than daily. These wetlands provide important ecosystem services, such as 

providing habitat for fish and wildlife, enhancing water quality, ameliorating flooding impacts, supporting 

coastal food webs, and protecting upslope areas from erosion. Mapping irregularly flooded wetlands is 

challenging given their expansive coverage and dynamic nature. Furthermore, coastal wetlands are 

expected to change over the coming century due to sea-level rise and changes in the frequency and 

intensity of extreme storms. Consequently, coastal managers need baseline information on the spatial 

distribution of wetlands along with efficient and repeatable methods for observing changes. In this study, 

we used coastal wetlands from existing land use land cover data, best available lidar-derived digital 

elevation models, and Monte Carlo simulations to incorporate elevation uncertainty to create a 

probabilistic map of irregularly flooded wetlands along the northern Gulf of Mexico coast (USA). Our 

approach integrated findings from a review of coastal wetland elevation error in lidar datasets and an 

analysis of spatial autocorrelations of wetland elevation. We found a positive correlation (r = 0.563, p < 

0.0001) when comparing the probability estimated from a digital elevation model and in situ elevation 

observations. The differences in probability had a mean bias error of -0.04 (i.e., digital elevation 

model-based probability tends to be slightly lower), a mean absolute error of 0.20, and a root mean square 

error of 0.26. Beyond this overall validation, we explored error metrics for land cover classes and lidar 

collection details. To quantify areal coverage of the probabilistic output, we classified the probability 

values into equal bins using an interval of 0.33. The areal coverage of the lowest probability bin 

(“unlikely”; probability ≤ 0.33) was separated into the upper and lower portions of the irregularly flooded 

wetland zone. Of the coastal wetlands along the northern Gulf of Mexico coast about 38% were classified 

as unlikely and low with the greatest coverage in south Louisiana and the Everglades and around 33% 
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were classified as unlikely and high with the greatest coverage in the Everglades and Texas. The relative 

coverage within the highest probability bin (“likely”; probability > 0.66) covered around 13%, with the 

greatest coverage in south Florida, south Louisiana, and Texas. The framework developed in this study 

can be transferred to other coastal wetland areas and updated to observe changes with sea-level rise. 

Highlights 

● Produced a probabilistic map of irregularly flooded wetlands. 

● Included sources of uncertainty and wetland elevation spatial autocorrelation. 

● Probability from digital elevation data generally agreed with in situ observations. 

● Approach provides regional baseline and can be transferred to other areas. 

Keywords 

coastal wetlands, elevation uncertainty, lidar, Monte Carlo simulations, spatial autocorrelation 

1. Introduction 

Coastal wetlands are dynamic ecosystems that have adapted to changing sea level and climate throughout 

history (Jennerjahn et al., 2017; Saintilan et al., 2022). These wetlands provide habitat to numerous 

endemic species (Greenberg et al., 2006) along with many other valuable ecosystem services (Barbier et 

al., 2011). These systems are expected to experience widespread change in the future due to climate 

change and sea-level rise (Osland et al., 2022; Saintilan et al., 2022). To better manage coastal 

environments, coastal managers need baseline information on the current spatial distribution of wetlands 

and efficient and repeatable methods for observing change over time from climate change and sea-level 

rise. 

Currently, there are several extensive mapping efforts in the United States that include coastal wetland 

information. These include the U.S. Fish and Wildlife Services’ National Wetlands Inventory (U.S. Fish 

and Wildlife Service, 2022), the U.S. Geological Survey’s (USGS) National Land Cover Database 
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(NLCD), USGS’ Land Change Monitoring, Assessment, and Projection (LCMAP; Brown et al., 2020), 

and National Oceanic and Atmospheric Administration’s (NOAA) Coastal Change Assessment Program 

(C-CAP; NOAA, 2016). a provide valuable information on the distribution and coverage of general cover 

types, researchers and land managers often require additional, more detailed wetland information on 

coastal vegetation zones based on salinity (Enwright et al., 2015) or need the development or refinement 

of products with a focus on tidal wetland inundation (O’Connell et al., 2017; Enwright et al., 2018; 

Holmquist et al., 2018; Brophy et al., 2019; Lamb et al., 2019; Holmquist and Windham-Myers, 2022; 

Narron et al., 2022). 

Irregularly flooded wetlands are found above the mean high water tidal datum and are exposed to 

tides and saltwater less frequently than daily. In addition to typical tides, perigean spring tides, 

wind-induced water level fluctuations, and storms can play a major role in regulating flooding and salinity 

in coastal wetlands, especially in microtidal areas with frequent extreme storms, such as the northern Gulf 

of Mexico (USA; Stout, 1984). Maps with coastal wetland zonation based on salinity, such as those 

produced by Enwright et al. (2015), can be helpful because irregularly flooded wetlands can span a wide 

zone and are often mapped as palustrine wetlands in existing National Wetland Inventory or C-CAP maps, 

especially along the palustrine and estuarine ecotone. Evident from the palustrine and estuarine 

definitions, exposure to saline water is an important abiotic factor regulating coastal wetland zonation. 

Identifying these wetlands, which include supratidal areas, requires use of a water level that is higher than 

a tidal datum. For example, Brophy et al. (2019) developed a model to delineate the upper boundary of 

estuaries along the West Coast of the United States using elevation data and NOAA’s 50% exceedance 

values for extreme water levels (e.g., Zervas et al., 2013). A similar approach could make use of NOAA’s 

high-tide flooding levels (Sweet et al., 2018), which include inundation associated with perigean spring 

tides, wind-induced water level fluctuations, and storms. Land managers need observations of irregularly 

flooded wetlands because the frequency of contemporary high-tide flooding levels is expected to increase 

over the next several decades with accelerated sea-level rise (Sweet et al. 2018), and this increase is 

expected to have a high magnitude along the northern Gulf of Mexico in the 2030s (Thompson et al., 
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2021). In addition to sea-level rise, the magnitude and intensity of extreme storms have been predicted to 

increase in the future with climate change (Knutson et al. 2010). 

Delineating areas under a specific water level requires addressing multiple sources of elevation 

uncertainty including general uncertainty in elevation data (ASPRS, 2015), elevation error in coastal 

wetlands (Su and Bork, 2006; Schmid et al., 2011; Medeiros et al., 2015; Buffington et al., 2016; 

Medeiros et al., 2022), and for coastal areas, vertical datum transformation (Tang et al., 2018). Statistical 

models can be developed to reduce error in elevation data in coastal wetlands (Medeiros et al., 2015; 

Buffington et al., 2016; Cooper et al., 2019; Medeiros et al., 2022). While elevation data correction is 

optimal, in situ data availability issues can limit the ability to utilize this approach for spatially extensive 

regional studies. While accounting for lidar error, tidal datum uncertainty, and random uncertainty, 

Holmquist and Windham-Myers (2022) calculated relative tidal elevation for the conterminous United 

States using partial derivatives. This product normalizes elevation to tidal amplitude at MHW. Their layer 

was constrained to estuarine wetlands or adjacent palustrine wetlands that had a greater than 1% 

probability of being below an estimated mean higher high water spring (MHHWS) tide elevation layer 

(Holmquist et al., 2018) and any wetlands mapped as tidal in the National Wetland Inventory. In addition 

to relative tidal elevation, the study also included the development of a map of the probability of a 

wetland having an elevation below the MHW tidal datum (i.e., low marsh). 

Monte Carlo simulations can be used to propagate these sources of uncertainty while also 

incorporating actual or assumed spatial autocorrelation of error using spatially explicit random fields 

(Wechsler and Kroll, 2006). This approach has been used to map intertidal areas (Enwright et al., 2018) 

and is commonly used for sea-level rise inundation (Cooper et al., 2013; Gesch 2018; Kulp and Strauss, 

2019). In particular, Monte Carlo simulations may offer an alternative when statistical DEM correction is 

not feasible due to a regional study extent and limited in situ elevation data availability. 

As previously mentioned, the delineation of irregularly flooded wetlands along microtidal coasts with 

frequent storms and wind-driven events may require the use of a water level that exceeds tidal datums 

alone. The objective of this study was to build on the work of Enwright et al. (2018) and Holmquist and 
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Windham-Meyers (2022) to develop probabilistic maps for irregularly flooded wetlands along the 

northern Gulf of Mexico. The research questions for this study are: (1) How can elevation data and 

uncertainty information for wetland elevation, tidal datums, and high-tide flooding be used to map the 

probability of irregularly flooded wetlands (i.e., the probability that an area is an irregularly flooded 

wetland based on elevation)?; (2) How can spatial autocorrelation be integrated into the probabilistic 

mapping?; (3) How does this map compare to probability from in situ elevation observations?; and (4) 

How does irregularly flooded wetland coverage vary across the Gulf of Mexico? 

2. Methods 

2.1. Study area 

The study area was the northern Gulf of Mexico, which included five states — Texas, Louisiana, 

Mississippi, Alabama, and Florida (Fig. 1). Due to the gently sloping topography of the coastal plain, the 

region includes a substantial portion of the coastal wetlands in the conterminous USA (Greenberg et al., 

2006). The northern Gulf of Mexico is a microtidal system with a tidal amplitude from 0.5–1 m (NOAA, 

2019c) and a high proportion of brackish wetlands (Greenberg et al., 2006). Coastal wetland zonation and 

species composition vary along the northern Gulf of Mexico due to differences in geomorphology, 

climate, and management of coastal lands (Gabler et al., 2017). For example, south Texas has expansive 

tidal flats due to hypersaline conditions from arid conditions (Osland et al., 2013). Additionally, due to 

less frequent severe freezes, scrub/shrub and forested wetlands dominated by mangroves can be found in 

south Texas, the mid-coast of Texas, southeastern Louisiana, and south Florida, whereas coastal wetlands 

in other areas are often dominated by graminoid or succulent vegetation (Gabler et al., 2017). Regarding 

coastal wetland zonation and coverage, south Louisiana and south Florida have expansive coastal 

wetlands due to a low slope and spatially extensive low-lying lands (Reyer et al., 1988; Osland et al., 

2022). 
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Consequently, data processing was conducted at the watershed-level for subregions along the northern 

Gulf of Mexico (Fig. 1). We used estuarine drainage areas delineated by Dale et al. (2022) as watershed 

boundaries. These watersheds were combined to form subregions along the northern Gulf of Mexico, 

which included: (1) Laguna Madre; (2) Texas Mid-Coast; (3) Chenier Plain; (4) Mid-Deltaic Plain; (5) 

Deltaic Plain; (6) Mississippi Sound; (7) Florida Panhandle; (8) Florida Big Bend; (9) West Peninsula 

Florida; (10) Everglades; and (11) Florida Keys (Fig. 1). 
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Fig. 1. Study area for mapping irregularly flooded wetland probability along the northern Gulf of Mexico 

coast, USA. a-d includes watersheds for groups of regions and e provides an overview of the study area. 

Watershed names are listed by inset map and number. 
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2.2. Coastal wetland mask 

Existing land cover data and elevation data were used to constrain the study area to coastal wetlands. 

Specifically, the study area included coastal wetlands that fell within a generalized 5-m contour (relative 

to the North American Vertical Datum of 1988 [NAVD88]) that was created from 1/3 arc-second seamless 

DEMs (10 m) from the USGS 3D Elevation Program (3DEP) (USGS, 2020). We used land cover to 

develop a coastal wetland mask from NOAA’s 2016 C-CAP 30-m dataset (NOAA, 2016) and 10-m 

C-CAP BETA land cover dataset (NOAA, 2019a). The coastal wetland mask included all estuarine 

emergent marsh, estuarine scrub/shrub wetlands, and estuarine forested wetlands. The coastal wetland 

mask also included adjacent wetlands that were connected to estuarine wetlands using 8-pixel 

connectivity (i.e., connectivity that can occur through cells in both cardinal and diagonal directions). 

Unless noted otherwise, the spatial data analysis was conducted using Esri ArcGIS Pro 2.9 (Redlands, 

California, USA). More details on the coastal wetland mask are included in Appendix A. 

2.3. Mapping irregularly flooded wetland probability 

The main objective of this study was to delineate irregularly flooded wetlands along the northern Gulf of 

Mexico coast. Figure 2 shows an overview of the process used for developing this product. The sections 

below cover the general methods used for this study. Additional details on the methods can be found in 

Appendix A. 
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Fig. 2. An overview of the approach used for estimating the probability of an area being an irregularly 

flooded wetland along the northern Gulf of Mexico coast, USA. Uncertainty estimates included 

uncertainty from NOAA’s high-tide flooding level (HTF; Sweet et al., 2018), coastal wetland elevation, 

and tidal datum transformation. HF, hydroflattened; DEMs, digital elevation models; LULC, land use land 

cover data; and VDatum, National Oceanic and Atmospheric Administration’s VDatum (NOAA, 2019b); 

SA, spatial autocorrelation. 

2.3.1. Flooding level 

An important first step for this effort was to determine what flooding level should be used for irregularly 

flooded wetlands. Cowardin et al. (1979) broadly defines irregularly flooded wetlands as those where the 

land surface is flooded by tidal inundation less than daily. Irregularly flooded wetlands along the northern 
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Gulf of Mexico are often found above MHW (i.e., the average of all the high water heights observed over 

the current National Tidal Datum Epoch; 1983–2001) and below the extreme high water spring tide (i.e., 

increased tide as the result of the Moon being new or full; Cowardin et al., 1979). In addition to regular 

tides, perigean spring tides, wind-induced water fluctuations, and storms can all play a major role in 

regulating the salinity and zonation of coastal wetlands, especially in microtidal areas with frequent 

extreme storms, such as the northern Gulf of Mexico (Stout, 1984). Examples of irregularly flooded 

wetlands along the Gulf of Mexico are shown in Figure 3. 

Fig. 3 Examples of irregularly flooded wetlands along the northern Gulf of Mexico coast, USA. a 

Spartina patens (saltmeadow cordgrass) marsh. b marsh with Juncus roemerianus (black needlerush), and 

Distichlis spicata (saltgrass) with a salt panne in the background. Both photos were taken by Heather 

Levy in the Florida Big Bend region and used with permission. c Avicennia germinans (black mangrove) 

and Spartina patens marsh in coastal Louisiana. Photographs by Nicholas Enwright. 

NOAA has categorized high-tide flooding into three coastal flooding levels, which include minor flooding 

(also called nuisance flooding), more severe, storm-driven, moderate flooding, and major flooding (Sweet 

et al., 2018). NOAA’s high-tide flooding levels have been calculated for tide gauges. We assigned 

high-tide flooding levels to each watershed based on proximity to the nearest NOAA gauge with an 

assigned high-tide flooding level. We used the minor flooding level for most of the study area as the upper 
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boundary for irregularly flooded wetlands. The rationale for using NOAA’s minor high-tide flooding level 

is that it captures the extreme spring tide along with perigean spring tides, wind-induced water level 

fluctuations, and minor storm tides that are often associated with irregularly flooded wetlands, such as 

high marsh and salt pannes/flats (USNVC, 2022a, b). In addition to high marsh and salt pannes/flats, our 

definition may include areas that fall within the wetland-upland transition zone (e.g., Thorne et al., 2016). 

In addition to justification from past literature (Stout, 1984), the use of these flooding levels is in line with 

recent coastal vegetation elevation analyses in Mississippi (Anderson et al, 2022). This study found the 

ecotone zone (i.e., wetland to upland transition) in Grand Bay, Mississippi had a maximum elevation of 

0.69 m NAVD88. In comparison, the NOAA minor high-tide flooding level for Grand Bay is 0.81 m 

NAVD88 (using tidal datum transformation for NOAA station ID: 8740166; note, this does not account 

for any uncertainty from the tidal datum transformation or the NOAA high-tide flooding level). With 

communication from local experts (Jennifer Wilson and Jena Moon, U.S. Fish and Wildlife Service, oral 

communication, [September 13, 2021)]), we used the moderate high-tide flooding level for the Laguna 

Madre and Texas Mid-Coast regions. A higher flooding level was used due to the presence of high marsh 

and salt pannes/flats at higher elevations, specifically salty prairie in the Texas’ upper and middle coast 

and hypersaline salt flats in South Texas. 

2.3.2 Monte Carlo simulations 

Using an approach similar to one used by Enwright et al. (2018), we used Monte Carlo simulations run 

with lidar-derived, hydroflattened DEMs, existing coastal wetland land cover data, tide information, 

flooding levels, and elevation uncertainty estimates to calculate the probability of an area being 

irregularly flooded. We used the best available DEMs, which mostly included 1-m DEMs from the USGS 

3DEP. Figure 4 shows the acquisition year of lidar used to create DEMs, if known. The point spacing and 

expected accuracy of lidar data can be characterized using USGS lidar quality levels (USGS, 2022). Of 

the lidar data used, around 11% of the data had a quality level 1 (≥ 8 points per m2; 10 cm root mean 

square error [RMSE] for vertical accuracy; DEM spatial resolution was 1 m or better), 55% was quality 
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level 2 (≥ 2 points per m2; 10 cm RMSE for vertical accuracy; DEM spatial resolution was 1 m), 20% was 

quality level 3 (≥ 0.5 points per m2; 20 cm RMSE for vertical accuracy; DEM spatial resolution was 3 m), 

7% was quality level 4 (139 cm RMSE for vertical accuracy; DEM spatial resolution was ≥ 3 m). 

Generally, the quality level is linked to year of collection with newer data often having a quality level of 2 

or better. Additional details on the DEM source metadata are included in Enwright et al. (2022). We used 

NOAA’s VDatum v4.0 (NOAA, 2019b) to transform the vertical datum of the DEMs at a spatial 

resolution of 10 m from the NAVD88. Specifically, VDatum was used to create DEMs that were 

referenced to two locally relevant tidal datums — the mean higher high water and MHW tidal datums. 

Fig. 4. Acquisition year for elevation data used to estimate the irregularly flooded wetland probability 

along the northern Gulf of Mexico coast, USA. 3DEP, U.S. Geological Survey’s 3D Elevation Program 

(USGS, 2020). 

Monte Carlo simulations included 1,000 iterations and were used to determine if pixel elevation was 

above MHW and below high-tide flooding levels (Sweet et al., 2018) while propagating various sources 

of elevation uncertainty. Elevation uncertainty included literature-derived estimates of coastal wetland 
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elevation error in lidar data, regionally variable tidal datum uncertainty from VDatum, and the high-tide 

flooding level uncertainty. Regional VDatum uncertainty estimates were assigned to watersheds via the 

VDatum region that covered the majority of the watershed. The NOAA high-tide flooding level 

uncertainty had a RMSE of 0.19 m and 0.25 m for minor and moderate high-tide flooding levels, 

respectively (Sweet et al., 2018). To increase computational efficiency, all elevation values and elevation 

uncertainty estimates used in this study were multiplied by 1,000 and converted to integer (Appendix A). 

As previously mentioned, we conducted a literature review to derive estimates of coastal wetland 

elevation error in lidar data. For this review, we documented the pulse spacing, elevation error, ground 

truth source, and study location (Appendix A). To be conservative, we truncated the literature-derived 

coastal wetland elevation error estimate to cm precision (i.e., 0.23 m) and multiplied by 1,000 (i.e., 230). 

For each region, we estimated the Euclidean distance where there was no spatial autocorrelation in coastal 

wetland elevation. We used GeoDa v. 1.20 (Anselin et al., 2006) to develop spatial correlograms for each 

watershed with 40 distance bins for elevation data resampled to 100 m. We determined the distance bins 

where the spatial autocorrelation intersected the zero intercept and determined the average of the two 

distance bins (e.g., Figure S1). We calculated the median distance for where no spatial autocorrelation 

existed per region. 

For each iteration in the Monte Carlo simulation, a random field was created by developing a random 

raster with a normal distribution that had mean set to 0 and the SD set to the coastal wetland elevation 

error estimate (i.e., 230 [0.23 m]). Because elevation error in DEMs for coastal wetlands is mostly 

positive (Buffington et al., 2016; Kidwell et al., 2017; Enwright et al., 2018; Alizad et al., 2020), we 

forced the error to be positive for 95% of the iterations by taking the absolute value of the random field. 

We left the bias of the error unconstrained for remaining 5% of the iterations. The spatial resolution of 

this raster was set to the zero spatial autocorrelation distance for the respective region for the watershed. 
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Next, the random field was converted to a point shapefile. We used inverse distance weighted 

interpolation to develop a 10-m rasterized random field from the point shapefile. In addition to 

uncertainty related to coastal wetland elevation, the Monte Carlo simulations also integrated uncertainty 

for the upper and lower bounds of the irregularly flooded wetland zone (Table S1). For each iteration, the 

upper and lower bounds were permuted using a random number from a normal distribution with a mean 

of zero and a standard deviation set to the uncertainty values (Table S2). 

2.3.3 Binning probabilistic outputs 

The watershed-based probability layers were mosaicked into a single raster file for the northern Gulf of 

Mexico. To summarize areal coverage of probability ranges, we reclassified the continuous probability 

layer that ranged from 0–1 into three classes that are used by the Intergovernmental Panel on Climate 

Change for communicating probabilities (IPCC, 2022). The first class includes areas that are unlikely to 

be irregularly flooded wetlands (probability ≤ 0.33). The second class includes areas that are as likely as 

not to be irregularly flooded wetlands (probability > 0.33 and ≤ 0.66). The final class includes areas that 

are likely to be irregularly flooded wetlands (probability > 0.66). We used the midpoint of the NOAA 

high-tide flooding level and the MHW tidal datum to estimate whether areas that were unlikely to be 

irregularly flooded wetlands (i.e., probability ≤ 0.33) were in the upper (higher) or lower portion of the 

irregularly flooded wetland zone. We summarized the absolute and relative coverage of irregularly 

flooded wetlands by class by region and watershed (Fig. 1). 

2.4. Probabilistic output validation 

We used in situ elevation observations collected between 2012 and 2021 within coastal wetlands (n = 

3,027) referenced to NAVD88 from a variety of sources across the northern Gulf of Mexico coast to 

validate the irregularly flooded wetland probability layer (Table 1). Points were located in every region 

except the Florida Panhandle. Some data came from Online Positioning User Service (OPUS) survey 

points and National Geodetic Survey benchmarks (Table 1; Stoker and Miller, 2022). For benchmark data, 
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we restricted the points to those with an elevation source labelled as either “leveling” and “GPS 

observation.” These data have been used for other landscape-scale lidar DEM accuracy assessments 

(Gesch et al., 2014; Stoker and Miller, 2022). 

While these in situ data may not have been collected at the same time as the lidar elevation data, these 

data provide a reasonable approach to validating the probabilistic outputs and are in line with the general 

approach of using the best available data, especially given the spatially extensive nature of the study area. 

While studies often compare a DEM to in situ elevation data using linear regression (Stoker and Miller, 

2022; Medeiros et al., 2022), we opted to use a Spearman’s rank correlation to show the relationship 

between the probability of an area being irregularly flooded estimated using the DEMs and the in situ 

observations due to the constraint for linear regression having no spatial autocorrelation of the residuals, 

which is often violated in spatial environmental datasets. We conducted correlation analyses for the entire 

Gulf of Mexico coast and by region for regions with over 30 data points (Table 1). We developed box 

plots for the difference and absolute difference between the probability values from the DEMs and the in 

situ points and calculated the mean bias error (MBE), mean absolute error (MAE), and the root mean 

square error (RMSE). All plots were created in SigmaPlot 12.5 (SyStat Software Inc.; San Jose, 

California, USA). 
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where Pi is the irregularly flooded wetland probability value from the DEMs, Oi is the irregularly flooded 

wetland probability value from in situ observations, n is the number of validation points, and i is an 
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 integer from 1 to n. These statistics have been used by other studies for comparing elevation data and in 

situ observations (e.g., ASPRS, 2015; Cooper et al., 2019; Stoker and Miller, 2022; Medeiros et al., 

2022). All validation results were rounded to the nearest cm. 

Table 1. In situ elevation sources, number of points per source, and total points by region for comparison 

with the irregularly flooded wetland probability along the northern Gulf of Mexico coast, USA. See 

Figure 1 for regional boundaries. 

Region Source(s) Points per source Region total 
Laguna Madre Stoker and Miller (2022) 12 12 
Texas Mid-Coast Moon et al. (2022) 

Stagg et al. (2021) 
Stoker and Miller (2022) 

9 
161 
10 

180 

Chenier Plain Moon et al. (2022) 
Sharp et al. (2021) 
Stagg et al. (2020) 
Stoker and Miller (2022) 

5 
669 
29 
3 

706 

Mid-Deltaic Plain Sharp et al. (2021) 
Stoker and Miller (2022) 

347 
2 

349 

Deltaic Plain Sharp et al. (2021) 
Stoker and Miller (2022) 

609 
3 

612 

Mississippi Sound Andrews (2022) 
Brunden et al. (in review) 
Medeiros et al. (2022) 
Sharp et al. (2021) 
Stoker and Miller (2022) 

124 
532 
95 
161 
3 

915 

Florida Big Bend Medeiros et al. (2022) 
Stoker and Miller (2022) 

85 
8 

93 

West Peninsula Florida Buffington and Thorne (2022) 
Stoker and Miller (2022) 

88 
13 

101 

Everglades Buffington and Thorne (2022) 53 53 
Florida Keys Stoker and Miller (2022) 6 6 

In addition to an overall assessment, validation was conducted for several categories including by lidar 

acquisition year bins, lidar quality levels, and land cover classes. Lidar acquisition year bins included: (1) 

pre-2005; (2) 2005–10; (3) 2010–15; and (4) 2015–18. The validation was assessed for individual lidar 

quality levels, except for levels 3 and 4, which were combined. Finally, we assessed the validation for the 

following land cover classes from 2016 30-m C-CAP land cover data: (1) estuarine emergent marsh; (2) 
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estuarine woody wetland, with included both forested and scrub-shrub wetlands; (3) palustrine emergent 

marsh; (4) palustrine woody wetland, with included both forested and scrub-shrub wetlands; and (5) 

nonvegetated, which included unconsolidated shore, water, and palustrine and estuarine aquatic bed 

wetlands. For the landcover analysis, we omitted 10 points that were not mapped as one of the previously 

mentioned classes in the 2016 30-m C-CAP land cover map. Note, this rare event was caused by the 

coastal wetland mask being developed from both the 30-m C-CAP land cover product and the 2016 10-m 

C-CAP BETA land cover product. 

3. Results 

3.1. Irregularly flooded wetland probability and validation 

The output of the irregularly flooded wetland probability analysis was a spatially explicit probabilistic 

raster that was published as a USGS data release (Enwright et al., 2022). For this product, we utilized 

lidar error from literature for coastal wetland DEMs from 23 different studies, which had a mean value of 

0.46 m with an outlier (1.27 m linear error at 95% confidence) removed (Appendix A; Table S3). An 

example of the data around Grand Bay, Mississippi is shown in Figure 5. 
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Fig. 5. Example of the irregularly flooded wetland probability output near Grand Bay, Mississippi, USA. 

a land cover map modified from the National Oceanic and Atmospheric Administration’s Coastal Change 

Analysis Program 30-m layer (NOAA, 2016). b irregularly flooded wetland probability on a continuous 

scale for areas within the coastal wetland mask. c irregularly flooded wetland probability by percent bin 

for areas within the coastal wetland mask. Unlikely and low, probability ≤ 0.33 and below mid-point 

between mean high water and the NOAA high-tide flooding level (Sweet et al., 2018); Unlikely and high, 

probability ≤ 0.33 and above mid-point between mean high water and the NOAA high-tide flooding level; 

Likely as not, probability > 0.33 and ≤ 0.66; Likely, probability > 0.66. 

In situ elevation data were used to validate the irregularly flooded wetland product. The results of the 

Spearman’s correlation analysis found that there was a moderate positive correlation (r = 0.563, p < 

0.0001) between the probability estimated from the in situ elevation data and probability estimated from 

the DEMs. When exploring the probability differences, the MBE was around -0.04 (i.e., in situ-based 

probability was slightly higher than DEM-based probability), the MAE was 0.20, and the RMSE was 0.26 

(Fig. 6). 
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Fig. 6. Box plots for the difference in probability for being an irregularly flooded wetland (digital 

elevation model-based probability minus in situ observation-based probability) along the northern Gulf of 

Mexico, USA (n = 3,027). a raw difference, b absolute value of the difference. 

The relationship between the DEM-based probability and in situ-based probability varied by region (Fig. 

7). The relationship between probability estimates for the Texas Mid-Coast region was not significant (n = 

180; r = 0.057; p > 0.05). Due the lack of a relationship, the MBE, MAE, and RMSE were calculated for 

this region, which were -0.17, 0.26, 0.34, respectively. There was a positive relationship between 

DEM-based probability and in situ-based probability for all other regions. The Spearman’s correlation 

coefficients ranged from 0.399 (Deltaic Plain) to 0.702 (Florida Big Bend) with a p < 0.0001. The points 

for some regions in Florida (i.e., Florida Big Bend, West Peninsula Florida, and Everglades) did not cover 

the full range of probabilities (Fig. 7). 
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Fig. 7. Scatter plots and Spearman’s correlation coefficients between the irregularly flooded wetland 

probability estimated from the in situ elevation observations and from the DEMs by region along the 

northern Gulf of Mexico coast, USA. a Texas Mid-Coast, b Chenier Plain, c Mid-Deltaic Plain, d Deltaic 

Plain, e Mississippi Sound, f Florida Big Bend, g West Peninsula Florida, h Everglades. Region-specific 

analysis was not conducted for regions with less than 30 points. See Figure 1 for regional boundaries. 
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In general, older lidar data and lidar with a lower quality level seemed to have less agreement between the 

probabilistic estimates from the DEMs and in situ observations (Table 2). Compared to newer lidar 

acquisitions, validation from lidar acquired prior to 2010 had a greater magnitude for all error metrics. 

The validation results for lidar quality levels generally tracked the lidar acquisition year results. Most of 

the validation data fell within the estuarine emergent wetland class (about 78% of the points). Validation 

for the estuarine emergent wetland and palustrine emergent wetland had similar results for all metrics. 

Estuarine and palustrine woody had the highest correlation coefficients. In general, the error metrics for 

woody and nonvegetated had the highest magnitude error, whereas error metrics for palustrine woody 

were similar to emergent marsh. Nonvegetated had the lowest correlation coefficient of all land cover 

types. 

Table 2. Validation of irregularly flooded wetland probability estimates from digital elevation models 

along the northern Gulf of Mexico coast, USA using in situ elevation observations. The Spearman’s 

coefficient was only calculated for categories with more than 30 points. *, p < 0.001; MBE, mean bias 

error; MAE, mean absolute error; RMSE, root mean square error, NA; not applicable. 

Spearman’s 
Validation Category n coefficient MBE MAE RMSE 
All points NA 3,027 0.563* -0.04 0.20 0.26 
Acquisition years pre-2005 232 0.036 0.25 0.31 0.37 

2005–10 13 NA -0.24 0.30 0.39 
2010–15 261 0.469* -0.01 0.15 0.21 
2015–18 2,521 0.615* -0.07 0.19 0.25 

Lidar quality 
levels 

1 (≥ 8 points per m2) 
2 (≥ 2 points per m2) 

160 
2,361 

0.805* 
0.613* 

-0.17 
-0.07 

0.24 
0.19 

0.31 
0.25 

3–4 (≥ 0.5 points per m2) 506 0.388* 0.11 0.23 0.30 
Land cover Estuarine emergent marsh 2,350 0.570* -0.03 0.19 0.25 
classes (omitting Estuarine woody 84 0.719* -0.18 0.25 0.32 
five non-wetland Palustrine emergent marsh 380 0.545* -0.09 0.20 0.28 
classes) Palustrine woody 68 0.740* -0.08 0.15 0.20 

Nonvegetated 135 0.424* -0.14 0.26 0.33 
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3.3. Irregularly flooded wetland probability areal coverage 

To quantify and explore differences in areal coverage along the northern Gulf of Mexico, we classified the 

probability values into three equal bins and evaluated whether wetlands in the lowest bin (probability ≤ 

0.33) were in the lower or upper (higher) portion of the irregularly flooded zone (Table 3). Most of the 

area under the coastal wetland mask was included in either one of the unlikely classes (i.e., unlikely and 

low and unlikely and high). This area was closely divided between the two classes with around 10,355.86 

km2 (~38%) of the coastal wetland mask classified as unlikely and low and 9,024.94 km2 (~33%) of the 

coastal wetland mask classified as unlikely and high. The majority of the area classified as unlikely and 

low was located in Louisiana (Table S4). For this class, the top-five regions based on areal coverage were: 

(1) Chenier Plain, 3,124.05 km2 (~30% of the Gulf total); (2) Deltaic Plain, 2,179.66 km2 (~21% of the 

Gulf total); (3) Mid-Deltaic Plain, 1,744.01 km2 (~17% of the Gulf total); (4) Everglades, 1,058.12 km2 

(~10% of the Gulf total); and (5) Mississippi Sound, 815.47 km2 (~8% of the Gulf total). Most of the area 

classified as unlikely and high was in the Everglades region (Table 3). For this class, the top-five regions 

based on areal coverage were: (1) Everglades, 6,420.03 km2 (~71% of the Gulf total); (2) Texas 

Mid-Coast, 1,153.16 km2 (~13% of the Gulf total); (3) Laguna Madre, 726.63 km2 (~8% of the Gulf 

total); (4) Deltaic Plain, 251.05 km2 (~3% of the Gulf total); and (5) Chenier Plain, 187.49 km2 (~2% of 

the Gulf total). 

About 3,411 km2 (~13% of the area under the coastal wetland mask) was classified as likely to be an 

irregularly flooded wetland. Most of this area was in Florida, Texas, and Louisiana (Tables 3). For this 

class, the top-five regions based on areal coverage were: (1) Everglades, 1,104.46 km2 (~32% of the Gulf 

total); (2) Chenier Plain, 520.96 km2 (~15% of the Gulf total); (3) Texas Mid-Coast, 385.15 km2 (~11% of 

the Gulf total); (4) Laguna Madre, 369.41 km2 (~11% of the Gulf total); and (5) Deltaic Plain, 354.97 km2 

(~10% of the Gulf total). A breakdown of the areal coverage of irregularly flooded wetland probability by 

watershed is found in Table S4. 
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Table 3. Areal coverage irregularly flooded wetland probability by bin by region along the northern Gulf 

of Mexico, USA. Unlikely and low, probability ≤ 0.33 and below mid-point between mean high water and 

the NOAA high-tide flooding level (Sweet et al., 2018); Unlikely and high, probability ≤ 0.33 and above 

mid-point between mean high water and the NOAA high-tide flooding level; Likely as not, probability > 

0.33 and ≤ 0.66; Likely, probability > 0.66. See Figure 1 for regional boundaries. 

Coverage irregularly flooded wetland probability (km2) 
Unlikely Unlikely Likely 

Region and low and high as not Likely Total 
Laguna Madre 165.31 726.63 425.16 369.41 1,686.51 
Texas Mid-Coast 436.12 1,153.16 484.20 385.15 2,458.63 
Chenier Plain 3,124.05 187.49 758.88 520.96 4,591.38 
Mid-Deltaic Plain 1,744.01 10.74 494.49 105.73 2,354.98 
Deltaic Plain 2,179.66 251.05 760.01 354.97 3,545.69 
Mississippi Sound 815.47 74.29 181.70 98.19 1,169.65 
Florida Panhandle 72.25 75.27 46.58 72.78 266.88 
Florida Big Bend 515.58 49.62 156.20 195.16 916.56 
West Peninsula Florida 190.07 69.49 166.51 161.44 587.51 
Everglades 1,058.12 6,420.03 594.46 1,104.46 9,177.06 
Florida Keys 55.22 7.17 48.20 42.78 153.37 
Gulf-wide 10,355.86 9,024.94 4,116.39 3,411.03 26,908.22 

Beyond overall coverage, regional comparisons using relative coverage differences for each bin by region 

can provide additional insight in the general distribution and coverage of irregularly flooded wetlands 

(Fig. 8). For the unlikely and low bin, the top-five regions based on relative areal coverage (rounded to 

nearest percentage) were: (1) Mid-Deltaic Plain, 74%; (2) Mississippi Sound, 70%; (3) Chenier Plain, 

68%; (4) Deltaic Plain, 61%; and (5) Florida Big Bend, 56%. For the unlikely and high bin, the top-five 

regions based on relative areal coverage (rounded to the nearest percentage) were: (1) Everglades, 70%; 

(2) Texas Mid-Coast, 47%; (3) Laguna Madre, 43%; (4) Florida Panhandle, 28%; and (5) West Peninsula 

Florida, 12%. For the remaining area under the coastal wetland mask, there was about 15% in the likely as 

not class and 13% in the likely class. For likely class, the top-five regions based on relative areal coverage 

(rounded to the nearest percentage) were: (1) Florida Keys, 28%; (2) Florida Panhandle, 27%; (3) West 

Peninsular Florida, 27%; (4) Laguna Madre, 22%; and (5) Florida Big Bend, 21%. 
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Fig. 8. Relative coverage of irregularly flooded wetland probability by percent bin for regions along the 

northern Gulf of Mexico, USA. Unlikely and low, probability ≤ 0.33 and below mid-point between mean 

high water and the NOAA high-tide flooding level (Sweet et al., 2018); Unlikely and high, probability ≤ 

0.33 and above mid-point between mean high water and the NOAA high-tide flooding level; Likely as 

not, probability > 0.33 and ≤ 0.66; Likely, probability > 0.66. See Figure 1 for regional boundaries. 

4. Discussion 

The primary objective of this study was to develop a framework for estimating irregularly flooded 

wetland probability using NOAA’s high-tide flooding levels. While the outputs of this study are similar to 

the work by Holmquist and Windham-Myers (2022) regarding the use of uncertainty to produce regional 

maps related to wetland inundation zonation, our product is the first regional map of elevation-based 

irregularly flooded wetland probability across the northern Gulf of Mexico coast. This product can serve 

many important applications including providing a baseline for gauging future coastal wetland change 
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with climate change and designing wetland vegetation and faunal monitoring programs (e.g., 

above-ground biomass transects and developing marsh bird surveys). 

4.1. Interpretations and applications 

The results from the analysis provide a snapshot of irregularly flooded wetland probability distribution 

across the region. Overall, these results are aligned with past efforts to quantify wetland coverage in the 

Gulf of Mexico and highlight abundant wetland coverage in low-lying areas in south Louisiana and south 

Florida (Reyer et al., 1988; Table 3). By using various sources of uncertainty, the probabilistic outputs add 

helpful nuance to simply quantifying the areal coverage of coastal wetlands by region or watershed. These 

results can be used to address questions such as what watersheds or regions have a high abundance of 

areas that are: (1) likely to be irregularly flooded wetland; (2) unlikely to be irregularly flooded wetland 

and low elevation; and (3) unlikely to be irregularly flooded wetland and high elevation. 

Based on our results, we found that the Everglades and coastal watersheds from south Texas to 

southwestern Louisiana have abundant areas that are likely irregularly flooded wetland. We found south 

Louisiana and the Everglades have a high amount of area classified as unlikely to be irregularly flooded 

wetland and low. Finally, we found that the Everglades, Texas Mid-Coast, and Laguna Madre were 

regions have a high abundance of areas classified as unlikely to be an irregularly flooded wetland and 

high. Collectively, these results can provide information on the regional variability of coastal wetlands 

and provide general insights into how the wetlands in a region may be able to adapt to or withstand 

sea-level rise. For example, depending upon localized sediment accretion and subsidence rates, a 

watershed with an abundance of area mapped as likely to be irregularly flooded wetland or unlikely to be 

irregularly flooded wetland and high may have an increased capacity to adapt to future sea-level rise 

compared to regions that have a large amount of area that is unlikely to be irregularly flooded wetland and 

low (Saintilan et al., 2022). Areas that are mapped as unlikely to be irregularly flooded wetland and low 

may be candidates for placement of beneficial use materials to increase wetland elevation or, if 
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impounded, tidal restoration to increase the frequency of sedimentation via tidal influence (Zhao et al., 

2016). Likewise, regions that have abundant area classified as unlikely to be irregularly flooded wetland 

and high include areas that are currently mapped as coastal wetland but are located further upslope in 

freshwater wetlands. These areas include wetlands that may be irregularly flooded in the future with 

sea-level rise (Osland et al., 2022). Our understanding of the ability for coastal wetland adaptation or 

transformation may be expanded by combining the probabilistic layers developed in this study with 

coastal wetland condition metrics such as the unvegetated-vegetated ratio, which are correlated with 

wetland sediment budgets and wetland sea-level rise response (Ganju et al., 2022). Additionally, 

irregularly flooded marsh provides important habitat for many coastal fauna, such as the Eastern Black 

Rail (Laterallus jamaicensis jamaicensis; Tolliver et al., 2018), which was listed as threatened by the U.S. 

Fish and Wildlife Service in 2020. Maps of irregularly flooded wetland coverage can help assist land 

managers with habitat mapping for wetland-reliant fauna and develop current and future species-focused 

conservation plans (Moon et al., 2021). 

With accelerated sea-level rise, the frequency of the occurrence of the NOAA high-tide flooding levels 

used in this study is expected to increase over the next several decades, with an especially high magnitude 

increase in frequency along the northern Gulf of Mexico occurring in the 2030s (Sweet et al. 2018; 

Thompson et al., 2021). As previously mentioned, this map can provide insights into potential adaptive 

capacity of current wetlands for sea-level rise. Rising sea level associated with climate change is expected 

to lead to wetland loss and transformation (Osland et al., 2022). Therefore, there is a need for repeatable 

methods, such as the approach used in this study, to observe changes in irregularly flooded wetland 

probability over time. Change assessments between maps of irregularly flooded wetland probability could 

incorporate algorithms that are robust to noise, such as those that commonly used for detecting 

meaningful coastal geomorphic change by using mean and standard deviation of values (e.g., 

probabilities) between time periods (e.g., Liu et al., 2010). In addition to mapping contemporary 

irregularly flooded wetlands, the approach used in this study could be expanded to map potential future 
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irregularly flooded wetlands using NOAA high-tide flooding levels and sea-level rise scenarios. 

Observations over time and projections can provide researchers with the ability to validate and refine 

wetland transformation models. 

Finally, while our approach and product are helpful for identifying coarse wetland zonation based on 

inundation, the probabilistic outputs from this project could be used for more detailed vegetation-specific 

analyses. For example, vegetation data could be paired with these probabilistic maps and other remotely 

sensed data for a variety of analyses including species-level mapping, vegetation community-level 

mapping, and condition analyses. As an example, these data could be helpful for more detailed vegetation 

community delineation, such as determining high marsh, which is a subclass of irregularly flooded 

wetlands that is often dominated by vegetation species such as Spartina patens and includes other 

characteristic species, such as Distichlis spicata, Iva frutescens, and Salicornia spp. (USNVC, 2022a). 

4.2. Elevation uncertainty and validation 

Due to the well-documented elevation error in lidar data for coastal wetlands (Su and Bork, 2006; Schmid 

et al. 2011; Medeiros et al., 2015; Buffington et al., 2016), researchers have used a literature review to 

estimate possible lidar elevation error in coastal wetlands. This can be challenging because the level of 

detail of the in situ elevation data collection and error reporting may vary by study. Holmquist et al. 

(2018) published the first such literature review, which included four studies across many sites. The 

review led to the development of a site-weighted error and other error estimates, which included a mean 

offset of 0.173 m, a standard error of 0.110 m, and an assumed random error of 0.205 m (Holmquist and 

Windham-Meyers, 2022). These uncertainties were combined using the sum of squares for an average 

total uncertainty of 0.233 m. Building on this effort, for 12 studies, Alizad et al. (2020) found a pooled 

mean lidar error of 0.18 m and a standard deviation of 0.14 m. Our effort added to the literature review for 

a total of 23 studies. Because vegetation elevation error is often not normally distributed (ASPRS, 2015), 

we attempted to standardize the error estimates to either the 95th percentile or the linear error at 95% 
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confidence. We calculated the mean value of the 95th percentile and the linear error at 95% confidence 

error estimates, which was 0.230 m. 

The validation results point to a slight underestimate in probability when estimated from DEMs (MBE = 

-0.04), which is likely due to overestimating of wetland elevation error for the areas tested. As previously 

mentioned, older lidar data and data with a lower quality level seemed to have less agreement for the 

probabilistic estimates from lidar data and in situ observations (Table 2). While this drop in agreement 

could be due to the lidar spacing, it could also be due to a large temporal gap between in situ elevation 

observations and lidar acquisition. While quality level 1 data had the highest correlation coefficient, the 

magnitude of the MBE and MAE was greater compared to quality level 2 data. To add context to these 

results, around 5% of the validation points were assessed with quality level 1 lidar, whereas about 78% of 

the points were from quality level 2 lidar. Due to the limited number of points linked to quality level 1 

lidar data, additional data analysis for both quality levels could help better elucidate the differences in 

results between these two quality levels. Likewise, although woody wetland classes appeared to have a 

stronger correlation, additional data analysis for non-marsh wetlands could help reveal the validation 

differences by wetland types and provide more targeted information for elevation error in non-marsh 

wetlands. While this study estimated correlation by region, future efforts could expand on how regional 

differences in geomorphology, climate, and management of coastal lands impact irregularly flooded 

wetland delineation and validation using high-quality vegetation and in situ elevation data that was 

collected in a similar time period as the lidar acquisition. Despite a moderate correlation result and slight 

underestimate in probability, the product produced in our study provides the best available dataset for the 

probabilistic estimate of irregularly flooded wetland coverage at the landscape scale and can be used for 

the previously mentioned applications. 

4.3. Expanding upon past efforts 
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Holmquist and Windham-Myers (2022) calculated relative tidal elevation for the conterminous United 

States, which focused on wetlands below the MHHWS tidal datum. Their products include an estimate of 

the relative position in the tidal range and delineate regularly flooded wetlands (i.e., “low marsh;” areas 

exposed to tides daily). Our product complements the work done by Holmquist and Windham-Myers 

(2022) by focusing on the irregularly flooded wetland zone. In our study, we also produced a probabilistic 

coastal wetland map; however, we bracketed the irregularly flooded wetland zone with MHW as the 

lower bound and NOAA high-tide flooding levels as the upper bound. As previously mentioned, the 

NOAA high-tide flooding level includes inundation associated with perigean spring tides, wind-induced 

water fluctuations, and minor storms and was aligned with the U.S. National Vegetation Classification 

high marsh and salt panne/flat definitions. As previously mentioned, the use of a higher threshold was 

aligned with flooding levels used by Brophy et al. (2019), which aimed at delineating estuarine 

boundaries using lidar data, and field observations by Anderson et al. (2022). 

In our study, we used Monte Carlo simulations to address uncertainty and develop probabilistic outputs, 

whereas Holmquist and Windham-Myers (2022) propagated uncertainty using partial derivatives. A 

strength of the Monte Carlo approach is that it utilizes spatial random fields for propagating the coastal 

wetland elevation error. Our effort built on past research that used local spatial autocorrelation via a 

3-by-3-pixel filter (Enwright et al., 2018) and a multi-scaled approach using six different box sizes 

thought to potentially represent possible spatial autocorrelation of elevation error in coastal areas (Kulp 

and Strauss, 2019). In this study, we used the distance that spatial autocorrelation of coastal wetland 

elevation was zero. We also added interpolation to develop smooth random fields between the coarser 

spatial autocorrelation-based box sizes as suggested by Wechsler and Kroll (2006). The use of spatial 

autocorrelation of coastal wetland elevation was informed by findings by Alizad et al. (2020), which 

found that wetland elevation error in lidar datasets in some areas, such as Plum Island, Massachusetts, 

generally tracks with wetland elevation. While the use of coastal wetland elevation spatial autocorrelation 
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was a helpful starting point, wetland elevation error in lidar can be spatially variable and depend on 

species and vegetation height (Buffington et al., 2016; Alizad et al., 2020). 

For sea-level rise studies, a general rule of thumb is that confidence in accurately mapping inundation 

increases with higher thresholds due to less overlap with the target inundation level and elevation 

uncertainty in source data (Gesch, 2018). This can introduce challenges with contemporary tidal wetland 

mapping as tidal datums, such as MHW or MHHWS, which may not be outside the uncertainty of the 

lidar, especially for microtidal areas like the northern Gulf of Mexico (Alizad et al., 2020; Holmquist and 

Windham-Myers, 2022). Likewise, it could be difficult to find the probability of wetlands falling between 

narrow tidal datums (e.g., wetlands between MHW and MHHWS). The use of a wider inundation zone in 

our study (i.e., MHW as lower bound and around 0.5 m to 0.8 m above MHHW as the upper bound) may 

have helped alleviate some of these issues. While the lidar vertical error may impact the probability 

results for the lower end of the zone (i.e., wetlands that are at or near the MHW datum), the width of this 

zone can help increase the confidence in the probabilistic results in the rest of the zone. Holmquist and 

Windham-Myers (2022) did not set an upper bound for the high class or the Z*MHW, but instead used 

wetland data to limit the area to estuarine wetlands, palustrine wetlands that were thought to be below 

MHHWS, and tidal wetlands. Differences in approach, data availability at the time of analysis, and 

research questions between Holmquist and Windham-Myers (2022) and our study prevent a meaningful 

direct comparison of products produced; however, the differences between the approaches and research 

questions make the products from both studies complementary. 

4.4. Limitations and additional next steps 

As previously mentioned, older lidar data and lidar data with a lower quality level seemed to have 

reduced the agreement between the probabilistic estimates from lidar data and in situ elevation 

observations. While most of the study area included recent data collections with a quality level 2, there 

were two locations were older lidar data were used. The best available elevation data at the time this study 
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was conducted was 3DEP 1/3 arc second data (parts of the Everglades region) and lidar data with 

questionable quality in coastal wetlands (parts of the Deltaic Plain region). The impact of the disparate 

data sources created anomalous results (i.e., unlikely straight lines/breaks in probability). New lidar data 

from 2018 are now available for most of Florida and there is a recent acquisition for the Deltaic Plain of 

Louisiana that has not yet been published. 

While this effort used C-CAP data to develop a coastal wetland mask, this approach could be modified so 

that it can be used with any existing land cover product. This could include land cover maps that have 

reduced thematic detail such as USGS’ NLCD, which includes wetlands mapped as either woody 

wetlands or emergent herbaceous wetlands, or LCMAP, which has a single wetland class. For this study, 

our coastal wetland mask did not explicitly include palustrine scrub/shrub and palustrine forested 

wetlands. Future research could explore whether these classes could be added to help identify freshwater 

forested wetlands that are irregularly exposed to saline water. This may require a more nuanced approach 

to addressing elevation error in vegetated areas than used in this study. For example, it would be 

important to ensure that elevation error estimates were developed for specific types of vegetation (e.g., 

scrub/shrub and forested), which may have a lower elevation error. 

In this study, we used available in situ elevation observations, which may have potential for time 

differences between the lidar acquisition date. The scope of the study area and limited in situ data 

availability hindered our ability to add constraints for in situ and lidar acquisition related to temporal 

gaps. For this reason, we also decided to limit our validation efforts to land cover types and not by species 

or vegetation characteristics (e.g., height and percent cover by species). Future efforts focused on regional 

analyses could enhance the validation by using stricter constraints on data acquisition timing gaps and 

factor in vegetation cover and characteristics for probability validation. 
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Future efforts could include updating this map as new and improved coastal wetland elevation error 

estimates, new elevation data, and tidal datum transformations (with uncertainty estimates) become 

available. In this study, we found that lidar data advances, namely increasing points per square meter, 

have generally led to a reduction in lidar error in coastal wetlands. Future studies could evaluate whether 

lidar sensor technology advances, such as single photon and Geiger-mode lidar sensors (Stoker et al., 

2016), and increased availability in lidar with a quality level 1 or 2 may help reduce lidar error in coastal 

wetlands. Additionally, the availability of lidar point cloud analysis in cloud-based platforms like Google 

Earth Engine and Microsoft’s Planetary Computer may allow for researchers to efficiently use approaches 

to extract vegetation height information (Koma et al., 2021), which could enhance our understanding of 

potential elevation error. Likewise, future efforts could expand on this approach by integrating vegetation 

biomass or greenness, (Byrd et al., 2018) or vegetation height extraction from lidar point cloud into 

random fields. For example, salt pannes could have sparse cover and likely have low elevation error, but 

the approach used in our study did not account for variable vegetation cover. Likewise, areas with tall 

Juncus roemerianus may have higher elevation error than other surrounding vegetation communities like 

Spartina patens or succulent marsh species. 

Future efforts could build on the simple approach used in this study to determine areas in the upper 

(higher) and lower portions of the irregularly flooded wetland zone by using techniques like those used by 

Holmquist and Windham-Meyers (2022) to estimate the general zonation within the irregularly flooded 

wetland zone while also incorporating elevation uncertainty. Finally, future efforts could explore how the 

framework could be enhanced by using synthetic aperture radar, which can delineate flooded vegetation 

(Rangoonwala et al., 2016), detecting inundation with optical imagery (O’Connell et al., 2017; Narron et 

al., 2022), and fusion with optical imagery for developing refined wetland masks (Lamb et al., 2019). In 

addition to updating the analysis along the northern Gulf of Mexico coast, future studies could expand this 

framework to the conterminous United States and beyond. 
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5. Conclusion 

We used Monte Carlo simulations to incorporate elevation uncertainty and lidar-derived DEMs to create a 

probabilistic map of irregularly flooded wetlands. This product is the first regional map of elevation-based 

irregularly flooded wetland probability across the northern Gulf of Mexico coast. Our approach integrated 

findings from an updated literature review of coastal wetland elevation error and the use of spatial 

autocorrelation of coastal wetland elevation for random error field development. We found there was a 

significant, positive correlation when comparing the probability estimated from the DEM with the 

probability estimated from in situ elevation observations. Our results showed that DEM-based probability 

tended to be slightly lower than those estimated with in situ elevation observations. We found around the 

majority of the coastal wetland mask was included in either one of the classes that were unlikely to be 

irregularly flooded wetlands. Generally, these areas were split evenly between areas that were unlikely 

and low and unlikely and high. Most of the area classified as unlikely and low was in Louisiana and much 

of the area classified as unlikely and high was in the Everglades. The relative coverage of area classified 

as likely to be irregularly flooded wetlands covered around 13%, with the greatest coverage in south 

Florida, south Louisiana, and Texas. Regarding acquisition year and quality level, we found that older 

lidar data and lidar with a lower quality level seemed to have lower agreement between the probabilistic 

estimates from lidar data and in situ elevation observations. Most of the validation data were from 

emergent marsh, which tended to have a lower magnitude of error compared to woody wetlands, but a 

lower correlation coefficient. Future efforts could include updating the product produced in this study as 

new lidar data becomes available. Future updates could explore enhancing validation by using vegetation 

information and increasing the spread of points more evenly across the irregularly flooded wetland zone 

and for other wetland types, expanding to other areas, and predicting future irregularly flooded wetlands. 

The products developed from this study can serve many important applications including providing a 

baseline for gauging future wetland change with climate change and designing wetland vegetation and 

faunal monitoring programs (e.g., above-ground biomass transects and developing marsh bird surveys). 
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Appendix A 

1. Supplemental methods 

1.1. Coastal wetland mask 

The coastal wetland mask also included adjacent wetlands that were connected to estuarine wetlands 

using 8-pixel connectivity (i.e., connectivity that can occur through cells in both cardinal and diagonal 

directions). Based on visual inspection, we also added palustrine emergent marsh and unconsolidated 

shore wetlands that were within 3 pixels of connected estuarine and adjacent palustrine wetlands. These 

steps were completed for both datasets and then combined to determine the maximum extent of both 

masks. The final mask included water by using morphological operations to expand a mask by 3 pixels, 

which was used to include water areas from the both of the 2016 National Oceanic and Atmospheric 

Administration’s Coastal Change assessment land cover datasets (i.e., 30-m 2016 land cover dataset and 

the 10-m 2016 BETA land cover dataset). 

1.2. Elevation data processing 

For each DEM, we determined the value assigned to hydroflattened areas and set these pixels to “No 

Data.” Next, we resampled the DEMs from their native resolution to a 10-m DEM using the aggregate 

tool in Esri ArcGIS Pro. During this process, the minimum elevation of the 1-m DEM cells that fell 

within the new 10-m DEM cells was set as the elevation value. The rationale for resampling the DEM 

instead of simply using the standard 1/3 arc-second seamless product was that a moderate-resolution 

DEM would increase computation efficiency for the expansive spatial extent of this study and assigning 

the minimum value for the resampled DEM could help reduce potential elevation error (Schmid et al., 
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2011). We used NOAA’s VDatum v4.0 (NOAA, 2019) to transform the vertical datum of the DEMs at a 

spatial resolution of 10 m from the NAVD88. Similar to the process used by Defne et al. (2020), we 

extrapolated transformation values to inland areas by using inverse distance weighted interpolation. 

1.3. Literature review to derive estimates of coastal wetland elevation error 

We conducted a literature review to derive estimates of coastal wetland elevation error in lidar data. For 

this review, we documented the pulse spacing, elevation error, ground truth source, and study location. If 

available, we documented the 95th percentile of the error, which is the recommended metric by the 

ASPRS for vertical error for areas that include vegetated areas (ASPRS, 2015), due to a typical 

non-normal error distribution in vegetated areas. In other cases, the mean and standard deviation or, if 

reported, the RMSE, were documented. For results reported as the mean and standard deviation of error, 

the linear error at 95% confidence was estimated by multiplying the standard deviation by 1.96 and 

adding it to the mean. Likewise, in cases with a RMSE, we assumed normality and converted the RMSE 

value to an estimate of the 95th percentile of the error by multiplying the RMSE by 1.96. We took the 

maximum value for studies that reported error values by plant species. Additionally, we removed outliers, 

which were defined as values that were greater than 1.5 times the interquartile range. Finally, the mean 

value of the 95th percentile/confidence error estimates was calculated. The final wetland elevation error 

estimate was calculated by dividing the mean value without outliers by 2 (i.e., similar to 1.96). To be 

conservative, we truncated the wetland elevation error estimate to cm precision (i.e., 0.23 m) and then 

multiplied by 1,000 (i.e., 230). 

1.4. Spatial autocorrelation of coastal wetland elevation 

By watershed, we masked the DEMs to the coastal wetland mask. To avoid boundary issues, we buffered 

each watershed by 5 km. To increase computational efficiency, we resampled the DEMs from 10 to 100 m 

using bilinear interpolation. Next, these data were converted to point shapefiles. The spatial 

48 



autocorrelation analysis used all point pairs for this assessment except for four watersheds, which used a 

50% random sample due to computational limitations. The median distance for zero spatial 

autocorrelation was calculated by region and the value was rounded to the nearest km (Table S1). We 

analyzed Mobile Bay as a stand-alone watershed and included Ten Thousand Islands with the West 

Peninsula Florida region for spatial autocorrelation, but we grouped this watershed with the Everglades 

region for reporting. 

Table S1. Coastal wetland elevation distance for zero spatial autocorrelation by watershed and region 
along the northern Gulf of Mexico, USA. The median zero spatial autocorrelation distance for each region 
was rounded to the nearest km. See Figure 1 for regional and watershed boundaries. 

Zero spatial Median zero spatial 
autocorrelation autocorrelation 

Region Watershed distance (m) distance (m) 
Laguna Madre Lower Laguna Madre 7,425 16,000 

Upper Laguna Madre 1,6320 
Baffin Bay 19,355 

Texas Mid-Coast Corpus Christi Bay 9,094 11,000 
Aransas Bay 13,932 
San Antonio Bay 10,663 
Matagorda Bay 17,185 
Brazos River 5,934 
Austin-Oyster 9,233 
West Galveston Bay 11,965 

Chenier Plain East Galveston Bay 16,700 18,000 
Sabine Lake 8,500 
Calcasieu Lake 19,500 
Mermentau River 35,220 

Mid-Deltaic Plain Atchafalaya/Vermilion Bays 50,934 51,000 
Deltaic Plain Terrebonne/Timbalier Bays 26,078 28,000 

Barataria Bay 35,654 
Mississippi River 22,004 
Breton/Chandeleur Sound 28,964 

Mississippi Sound Lake Borgne 9,223 9,000 
Lake Pontchartrain 9,574 10,000 
West Mississippi Sound 6,907 7,000 
East Mississippi Sound 6,220 6,000 

Mississippi Sound — Mobile Bay Mobile Bay 27,112 27,000 
Florida Panhandle Perdido Bay 3,912 5,000 

Pensacola Bay 3,843 
Choctawhatchee Bay 5,528 
St. Andrew Bay 12,345 

Florida Big Bend Apalachicola Bay 21,240 5,000 
Apalachee Bay 29,960 
Econfina-Steinhatchee 4,930 
Suwannee River 3,880 
Waccasassa 5,040 
Withlacoochee 3,780 
Crystal-Pithlachascotee 10,890 

West Peninsula Florida Tampa Bay 10,574 10,000 
Sarasota Bay 9,227 
Charlotte Harbor 8,167 
Caloosahatchee River 14,222 
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Estero Bay 
Rookery Bay 
North Ten Thousand Islands 

12,878 
9,715 
4,708 

Everglades Everglades West Coast 
Everglades 

39,868 
66,233 

53,000 

Florida Keys Florida Bay-Florida Keys 18,780 19,000 

Figure S1. Example of spatial autocorrelation of coastal wetland elevation for Apalachicola, Florida 

(USA). 

1.5. Monte Carlo simulations 

To increase efficiency, the Monte Carlo analysis was conducted using numeric values of elevation and 

uncertainty as integer and not floating point. This meant that the DEMs and uncertainty estimates were 

multiplied by 1,000 and converted to integer (e.g., integer could include mm precision; a value of 157 

would be equal to 0.157 m). 

The upper bound included the cumulative error using regional uncertainty from VDatum for the mean 

higher high water (MHHW) datum and the high-tide flooding level, whereas the lower bound included the 

regional uncertainty from VDatum for the MHW datum. For uncertainty information by region see Table 
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S2. The cumulative vertical uncertainty (CVU) for the upper bound was calculated using a root sum of 

squares (Eq. 1) as recommended by Gesch (2018). 

2𝐶𝑉𝑈 = 𝑉𝑇𝑈  2+ 𝐹𝐿𝑈  (1) 

Where VTU is the vertical transformation uncertainty from VDatum for the MHHW datum and FLU is 

the uncertainty for the high-tide flooding level. 

For each iteration, pixels in the DEM were coded as “1” if the elevation with uncertainty propagation fell 

within the irregularly flooded wetland zone (i.e., between MHW and NOAA’s high-tide flooding level) 

and “0” if they fell outside the irregularly flooded wetland zone. The probability of a pixel being 

irregularly flooded was calculated by summing the binary simulation outputs and dividing by 1,000 (i.e., 

the number of iterations). The output files of the Monte Carlo simulations included non-wetland areas. We 

removed non-wetlands by restricting the probabilistic outputs to the coastal wetland mask. 

51 



Table S2. Regional elevation uncertainty information—in centimeters multiplied by 1,000—used for 
Monte Carlo simulations representing the upper and lower bound of the irregularly flooded wetland zone 
along the northern Gulf of Mexico, USA. Uncertainty sources are from the National Oceanic and 
Atmospheric Administration’s (NOAA) flooding level (HTF; Sweet et al., 2018) and NOAA’s VDatum 
4.0 tool (NOAA, 2019). VDatum uncertainty estimates were truncated to convert the values to integers. 
See Figure 1 for regional and watershed boundaries. UB, upper bound; LB, lower bound. 

LB 

Region Watershed 
UB uncertainty uncertainty 

HTF VDatum Cumulative VDatum 
Laguna Madre Lower 

Upper 
Baffin 

Laguna 
Laguna 
Bay 

Madre 
Madre 

250 
250 
250 

147 
147 
147 

290 
290 
290 

146 
146 
146 

Texas Mid-Coast Corpus Christi Bay 
Aransas Bay 
San Antonio Bay 
Matagorda Bay 
Brazos River 

250 
250 
250 
250 
250 

147 
147 
110 
110 
110 

290 
290 
273 
273 
273 

146 
146 
108 
108 
108 

Austin-Oyster 
West Galveston Bay 

250 
250 

110 
110 

273 
273 

108 
108 

Chenier Plain East Galveston Bay 
Sabine Lake 

190 
190 

110 
110 

220 
220 

108 
108 

Calcasieu Lake 190 108 219 108 
Mermentau River 190 108 219 108 

Mid-Deltaic Plain Atchafalaya/Vermilion Bays 190 160 249 160 
Deltaic Plain Terrebonne/Timbalier Bays 

Barataria Bay 
Mississippi River 
Breton/Chandeleur Sound 

190 
190 
190 
190 

160 
160 
160 
160 

249 
249 
249 
249 

160 
160 
160 
160 

Mississippi Sound Lake Borgne 
Lake Pontchartrain 

190 
190 

160 
160 

249 
249 

160 
160 

West Mississippi Sound 
East Mississippi Sound 
Mobile Bay 

190 
190 
190 

160 
160 
58 

249 
249 
199 

160 
160 
57 

Florida Panhandle Perdido Bay 
Pensacola Bay 
Choctawhatchee 
St. Andrew Bay 

Bay 

190 
190 
190 
190 

58 
58 
58 
54 

199 
199 
199 
198 

58 
58 
58 
54 

Florida Big Bend Apalachicola Bay 
Apalachee Bay 
Econfina-Steinhatchee 

190 
190 
190 

83 
83 
83 

207 
207 
207 

78 
78 
78 

Suwannee River 190 83 207 78 
Waccasassa 190 83 207 78 
Withlacoochee 190 83 207 78 
Crystal-Pithlachascotee 190 116 223 115 

West Peninsula 
Florida 

Tampa Bay 
Sarasota Bay 

190 
190 

116 
116 

223 
223 

115 
115 
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Charlotte Harbor 190 116 223 115 
Caloosahatchee River 190 116 223 115 
Estero Bay 190 116 223 115 
Rookery Bay 190 58 199 58 

Everglades North Ten Thousand Islands 190 71 203 71 
Everglades West Coast 190 71 203 71 
Everglades 190 71 203 71 

Florida Keys Florida Bay-Florida Keys 190 58 199 58 
1.6. Probabilistic output validation 

A 2.5-m buffer was applied to all points. If a point was within 2.5 m of another point, then the maximum 

point was retained and the other point was omitted. The probability of the in situ points being irregularly 

flooded wetlands was estimated using a Monte Carlo process following an approach similar to the process 

applied to the DEMs. This process included 1,000 iterations and included tidal datum transformation and 

uncertainty and high-tide flooding level uncertainty values but did not include coastal wetland elevation 

error adjustment. 

2. Literature review of lidar error results 

We found a total of 23 studies that included coastal wetland elevation error statistics. The studies used 

lidar that ranged from 2003 to 2017 (Table S3). The studies were mostly from the USA, with seven 

studies along the West coast, four studies along the northern Gulf of Mexico, and 10 studies along the 

East coast (one from Canada). Based solely on pulse spacing per m2, the lidar data could be characterized 

as roughly equal parts of quality level 2 data (≥ 2 points/m2) and quality level 3 data (≥ 0.5 points/m2). 

Two studies listed the ground truth source as differential global positioning system (GPS); however, most 

of the studies listed the ground truth source as real-time kinematic GPS (RTK GPS). The 95th percentile 

error or linear error with a 95% confidence ranged from 0.13 m to 1.27 m. For all studies, the median 

error was 0.47 m with an interquartile range of 0.32. The observation of 1.27 m was considered an outlier 

since it was greater than 1.5 times the interquartile range. With the outlier removed, the mean value was 

0.46 m. 
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Table S3. Coastal wetland lidar error summary from literature. For elevation error estimates, “*” indicates 
that a maximum value was taken. 95P, 95th percentile; RMSE, Root mean square error; LE95, linear error 
at 95% confidence; ME, mean error; SD, standard deviation; MAE, mean absolute error; GPS, global 
positioning system; RTK GPS, real-time kinematic global positioning system. For presentation, we 
rounded all error estimates to the nearest cm. 

Pulse 

Year 
spacing 
(pts/m2) 

Elevation 
error (m) Type 

Ground truth 
source Location Source 

2015 6 0.42 95P RTK GPS Dauphin Island, AL Enwright et al. (2018) 
2007 4 0.65 RMSE RTK GPS Apalachicola, FL Medeiros et al. (2015) 

1.27 LE95 
2003 4 0.07 ME RTK GPS Georgetown, SC Montané and Torres (2006) 

0.08 SD 
0.24 LE95 

2008–2010 1–9 0.51* 95P RTK GPS West Coast of United States Buffington et al. (2016) 
2009 9 0.32 95P RTK GPS Sapelo Island, GA Hladik and Alber (2012) 
2007 0.7 0.230 RMSE Static GPS Charleston, SC Schmid et al. (2011) 

0.45 LE95 
2008 7 0.45* MAE RTK GPS Oregon coast Ewald (2013) 

0.12 SD 
0.68 LE95 

2010 ≥2 0.30 95P RTK GPS San Pablo Bay, CA McClure et al. (2016) 
2010 5 0.33 RMSE RTK GPS Cape Cod, MA Rogers et al. (2018) 

0.65 LE95 
2008 2 0.27* RMSE RTK GPS Everglades, FL Cooper et al. (2019) 

0.53 LE95 
2003 0.2 0.07 RMSE Post-processed North Inlet, SC Morris et al. (2005) 

0.13 LE95 GPS 
2003 0.7 0.05 ME RTK GPS Maddieanna Island, SC Chassereau et al. (2011) 

0.28 SD 
0.60 LE95 

2013 2 0.29* RMSE RTK GPS Huelva, Spain Fernandez-Nunez et al. (2017) 
0.57 LE95 

2011 1 0.15 ME RTK GPS Plum Island, MA Alizad et al. (2020) 
0.05 SD 
0.25 LE95 

2017 3.0 0.250 ME RTK GPS Fire Island, NY Muñoz et al. (2019) 
0.16 SD 
0.56 LE95 

2003 2.3 0.12 RMSE Total station San Francisco, CA Rosso et al. (2006) 
0.24 LE95 

2003 7.8 0.02 ME Differential GPS Venice, Italy Wang et al. (2009) 
0.06 SD 
0.15 LE95 

2006 1 0.32* ME Differential GPS Bay of Fundy, Canada Millard et al. (2013) 
0.08 SD 
0.47 LE95 

2003 1.9 0.18* RMSE Total station Santa Barbara, CA Sadro et al. (2007) 
0.35 LE95 

2010 1 0.26 RMSE RTK GPS San Francisco, CA Buffington and Thorne (2019) 
0.51 LE95 
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2017 2.9 0.29 RMSE RTK GPS Suisun marsh, CA Buffington et al. (2019a) 
0.56 LE95 

2010/ 1.4 0.13 RMSE RTK GPS Chesapeake Bay, MD Buffington et al. (2019b) 
2017 0.25 LE95 
2007/ 0.8 0.45 RMSE RTK GPS Collier County, FL Buffington and Thorne (2022) 
2017 0.87 LE95 

Table S4. Areal coverage (sq km) irregularly flooded wetland probability by bin by watershed along the 
northern Gulf of Mexico, USA. See Figure 1 for regional and watershed boundaries. Unlikely and low, 
probability ≤ 0.33 and below mid-point between mean high water and the NOAA high-tide flooding level 
(Sweet et al., 2018); Unlikely and high, probability ≤ 0.33 and above mid-point between mean high water 
and the NOAA high-tide flooding level; Likely as not, probability > 0.33 and ≤ 0.66; Likely, probability > 
0.66. 

Coverage irregularly flooded wetland probability (km2) 
Unlikely Unlikely As likely 

Region Watershed and low and high as not Likely Total 
Laguna Madre Lower Laguna Madre 146.92 404.33 280.93 213.33 1,045.51 

Upper Laguna Madre 11.06 196.52 114.25 124.90 446.73 
Baffin Bay 7.33 125.78 29.98 31.17 194.27 

Texas Mid-Coast Corpus Christi Bay 26.60 87.64 35.87 18.11 168.21 
Aransas Bay 96.62 201.43 70.26 28.41 396.72 
San Antonio Bay 43.86 181.11 65.29 55.69 345.96 
Matagorda Bay 127.57 350.31 154.26 150.56 782.70 
Brazos River 29.29 33.08 27.70 28.41 118.48 
Austin-Oyster 17.45 24.52 15.45 10.32 67.74 
West Galveston Bay 94.72 275.06 115.37 93.67 578.82 

Chenier Plain East Galveston Bay 309.61 71.76 124.53 127.16 633.06 
Sabine Lake 816.65 74.30 117.68 74.97 1,083.59 
Calcasieu Lake 499.93 36.84 135.17 100.91 772.86 
Mermentau River 1,497.86 4.59 381.49 217.92 2,101.87 

Mid-Deltaic Plain Atchafalaya/Vermilion Bays 1,744.01 10.74 494.49 105.73 2,354.98 
Deltaic Plain Terrebonne/Timbalier Bays 677.76 6.10 98.45 20.63 802.95 

Barataria Bay 759.79 33.47 492.60 254.21 1,540.07 
Mississippi River 18.50 201.89 24.54 27.25 272.19 
Breton/Chandeleur Sound 723.61 9.59 144.42 52.87 930.49 

Mississippi Sound Lake Borgne 336.96 13.43 43.69 14.53 408.60 
Lake Pontchartrain 274.60 6.48 43.53 5.91 330.51 
West Mississippi Sound 83.39 13.22 20.77 11.76 129.15 
East Mississippi Sound 95.09 14.13 45.13 19.38 173.72 
Mobile Bay 25.44 27.03 28.57 46.62 127.67 

Florida Panhandle Perdido Bay 7.05 9.75 6.78 13.54 37.11 
Pensacola Bay 34.20 11.97 10.19 22.09 78.44 
Choctawhatchee Bay 6.49 6.96 5.93 8.70 28.08 
St. Andrew Bay 24.51 46.59 23.68 28.46 123.24 

Florida Big Bend Apalachicola Bay 44.07 22.15 30.91 47.77 144.89 
Apalachee Bay 174.32 12.60 33.50 28.65 249.07 
Econfina-Steinhatchee 53.17 1.41 16.24 23.51 94.34 
Suwannee River 12.66 0.47 5.14 7.05 25.32 
Waccasassa 118.99 4.24 26.92 18.27 168.42 
Withlacoochee 5.39 2.14 0.72 0.51 8.75 
Crystal-Pithlachascotee 106.98 6.62 42.77 69.40 225.77 

West Peninsula Tampa Bay 28.95 13.79 29.17 30.22 102.14 
Florida Sarasota Bay 9.25 6.11 8.34 6.69 30.40 
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Charlotte Harbor 70.43 24.18 80.35 95.06 270.02 
Caloosahatchee River 0.02 0.00 0.05 0.02 0.10 
Estero Bay 27.58 5.90 25.97 12.51 71.95 
Rookery Bay 53.84 19.51 22.61 16.94 112.90 

Everglades North Ten Thousand Islands 203.78 0.89 44.27 28.48 277.42 
Everglades West Coast 183.30 1,747.26 84.81 164.29 2,179.65 
Everglades 671.05 4,671.87 465.38 911.69 6,719.99 

Florida Keys Florida Bay-Florida Keys 55.22 7.17 48.20 42.78 153.37 
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